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= Unsupervised and Self-Adaptative Techniques for Cross-Domain Person Re-Identific...

argel domain Tor adaptation. However, they 4o not p
cross-camera mining, cluster filtering, nor ensembling. These
elements of our solution allow it to outperform SSG in all
adaptation scenarios.

ECN [32]. ECN-GPP [33], MMCL [34]. and Dual-
Refinement [35] use a memory bank to store features, which
is updated along the training to avoid the direct use of features
generated by the model in further iterations. The authors aim
to avoid propagating noisy labels to future training steps.
contributing to keeping and increasing the discrimination of
features during training.

PAST [10] applies HDBSCAN [36] as the clustering
method, which is similar to OPTICS [37] — the algorithm
of choice in our work. However, the memory complexity of
OPTICS is O(n), while for HDBSCAN is O(z2 3

MMT [12], M 1 [13]. ACT [38],
ABMT [16] are ble-based methods
or more networks and leverage mutual teaching by sharing
one network’s outputs with the others, making the whole
system more discriminative on the target domain. However,
training models in a mutual-teaching regime brings complexity
in memory and 10 the general training process. Besides that,
noisy labels can be propagated to other ensemble models,
hindering the training process. Nonetheless, ensemble-based
learning provides the best performance among state-of-art
methods. We propose using ensembles only during inference to
i ly eliminate the added to the training,
still taking advantage of knowledge complementary between
the models.

Our work is also based on Curriculum Learning with
Diversity [40]. a schema whereby the model starts learning
with easier examnles. i.e.. samples that are correctlv classified
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alignment of low and mid-level features. Third, methods in
both categories need images from source and target domains
during adaptation. Finally, the last Label Proposing methods
consider mutual-learning or co-teaching, which brings com-
plexity to the training stage.

Similarly, we assume to have only camera-related informa-
tion, i.c., we know from which camera (viewpoint) an i
was taken. In all steps, we use pseudo-identity information
exclusively given by the clustering algorithm without relying
on any ground-truth information. We differ from the prior
art by using a new diversity learning scheme and generating
triplets based on cach cluster’s diversity of points of view.
As we train the whole model, the method also learns high-
level features on the target domain. We simplify the training
process by considering one backbone at a time, without mutual
information exchange during adaptation. Finally, we apply
model ensembling for inference after the training process.

111. PROPOSED METHOD

Our approach to Person RelD comprises two phases: train-
ing and inference. Figure 1 depicts the training process, while
Table I shows the variables used in this work.

During training, we independently optimize ), different
backbones to adapt the model to the target domain. This phase
is divided into five main stages that are performed iteratively:
feature extraction from all data: clusterine: cluster selection:
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Unsupervised and Self-Adaptative Techniques for
Cross-Domain Person Re-Identification

Gabriel C. Bertocco™, Fernanda Andald

. Member, IEEE, and Anderson Rocha

, Senior Member, IEEE

Abstract—Person Re-Identification (RelD) across non-
overlapping cameras is a challenging task, and most works
in prior art rely on supervised feature learning from a
labeled dataset to match the same person in different views.
However, it demands the time-consuming task of labeling
the acquired data, prohibiting its fast deployment in forensic

and to, ultimately, propose candidate suspects for further
investigation [1].

Person RelD aims to match the same person in different
non-overlapping views in a camera system. Thanks to the
considerable discrimination power given by deep learning,

recent works [2]-[6] consider supervised feature learning on
wihinh wrialds hickh

scenarios. Unsupervised Domain Adaptation (UDA) emerges
ag a nramicing alternative. ac it nerfarme featnre adantation

walinan AF smann Avarasa

a lakhalad Aatacar

— A E T B iR )E B E I EE RPN B U ENN, EARTGE
RIERXLAFA L AT E, CERE R AEEREE: W2
RUWLE, FHEARPAR EWZAEE R

VERET: & AU IEEE/AAAVACM 25 E AR EE N EN4 253 VR

B A

1.8 1 #8H

[1] IEEE Fellow XXX A A SCHE H 035 T 70 5 S WL 3k A s RS Aok T v
U L MAML AARE R e2: S A5 N Bz AL i, [V e8] Ao F
A

[2] 5E/REB T, 4 HK S Philip Torr 0% 1B\ H R LU G, E AR
££ 1 5-way 1-shot 73 RAER R PIIETH2) 4% [V SCBEEE] (A G VPA ]

2. XX 2@ H
[1] 5 ACM SIGGRAPH Rt #4583, FRA B T.2%F¢ Ramesh Raskar #4524 PAFir
PRI LR, FWMBEEE LSRR PR T 10% A4 [W iR
LS

[2] AAAI Fellow XXX AN XXX [0 SCEEE] [FH SR AR &)



